

Important définitions for organic chemistry

Oxidation Reaction -> Net loss of electrons

A reaction involving loss of bonds
to H atoms and/or increase in
the number of TV bonds or bonds
to O atoms

Reduction Reaction > Net gain of electrons

A reaction involving an increase
in bonds to H atoms and/or
a decrease in the number of

A bonds or bonds to O atoms

CH3CH=CH2 reduction

Oxidation reduction

OH OH oxidation

CH3CH-CH2 reduction

CH3CH-CH2 reduction

CH3CH-CH2 reduction

Exam 2 will not cover anything below the line

You do not need to know this next reaction, but I am going to show it to you for reference

Example:

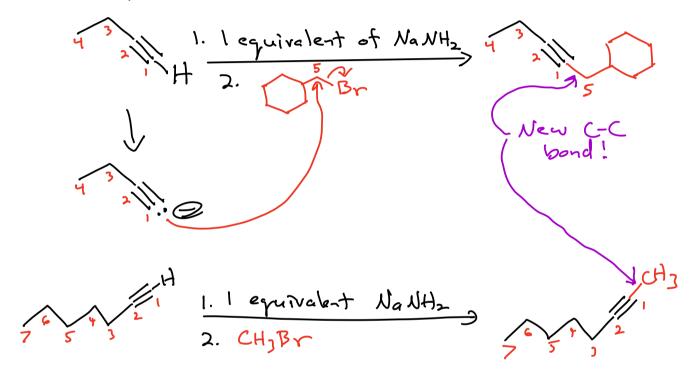
Epic New Reaction

CH3-C=c: + CH3CH2CH2-Br: CH3-C=C-CH2CH2CH3 + !Br:

A primary

haloalkane

C-C bond!



Time capsule: This is an SN2 reaction. The haloalkane must be primary to avoid an E2 reaction.

Making (-C bonds allows us to construct larger molecules from smaller ones!

A major goal of organic synthesis

Example:

Alkynes > The two orthogonal pi bonds define alkyne reactions

R-C=C-R > Same overall personality as alkenes

A) Reaction with 2 equivalents of X2

X=CP, Br

CH3-C=C-H

Anti

Br

Can

Stop

here

CH3-CBr2-CHBr2
Vicinal tetrahalide
"on adjacent
carbon atoms"

Mechanism involves a cation intermediate

Markovnikov's rule followed
However, the two X atoms always
end up on the same carbon

c) Conversion of a vicinal dihalide into an alkyne

H3C-C-C-CH3 NaNH2 H3C-C=C-CH3
Br H

Vicinal dihalide

Note this alkane is not terminal

Time capsule -> This is a double E2 reaction

When creating a terminal alkxne you must use 3 equivalents of NaNH2 as a first step -> AND -> you need a second step that is mild acid-> HCI/HQ

Internal alkyne example:

CH3-CHBr-CHBr-CH3 2eq. NaNH2> H3C-C=C-CH3

Big Deal - allows conversion of an alkane to an alkane

H₃C =
$$CH_3$$
 Br H

H₃C - $C-C-C-CH_3$

H Br

Racevir

 $CH_3-C=C-CH_3$

Br

H₃Cinic - CH_3

Br

H₃Cinic - CH_3

Br

H₃Cinic - CH_3

Br

H₃Cinic - CH_3

Br

Racemic

New Concept - The following species are in equilibrium, and the more stable species is the "keto" form

This process is called "tautomerization" as in "keto-enal tautomerization"

Favored

(a C=0 pi bond

is stronger than

a C=C pi bond)